Archive for September 2015

Beyond Jupyter: what’s in a notebook?

September 3, 2015

Yesterday I participated (as a visitor) in the kickoff meeting for OpenDreamKit, where one recurrent topic of discussion was notebooks, both Jupyter and Sage, including the question if they could be brought together. This reminded me of a recent blog post by Kirill Pomogajko entitled “Why I don’t like Jupyter”. And it reminded me of my own long-term project of integrating Jupyter with my ActivePapers system for reproducible research. That’s three reasons for writing down my thoughts about notebooks and their role(s) in computational research, so here we go.

One key observation is in Gaël Varoquaux’s comment on Kirill’s blog post: using Jupyter for doing science creates a lock-in, because all collaborators on a project must agree on using Jupyter. There is no other tool that can be used productively for working with notebooks. It’s a case of “wordization”: digital content is taken hostage by a tool that defines a storage format for its own convenience without much consideration for other tools, be they competing or complementary. Wordization not only restricts the users’ freedom to work with their data, but also creates headaches for the future. A data format defined by a tool can easily become unusable as the tool evolves and introduces incompatibilities, or of course if it disappears. In the case of Jupyter, its developers have always provided upgrade paths for notebooks between versions, but at some time this is bound to create trouble. Bugs are a fact of life, and I don’t expect that the version-2-compatibility-feature will get much testing in Jupyter version 23. To make it worse, a Jupyter notebook can depend on third-party code that implements embedded widgets. This is one of the reasons why I don’t use Jupyter for my research, although I am a big fan of using it for teaching. The other reason is that I cannot usefully link a notebook to other relevant information, such as code and data dependencies. Jupyter doesn’t provide any functionality for this, and they are hard to implement externally exactly because of wordization.

Wordization is often associated with evil intentions of market dominance, as they are regularly assumed for a company like Microsoft. But I believe that the fundamental cause is the obsession with tools over content that has driven the computing industry for many years. The tool aspects of a piece of software, such as its feature list and its user interface, are immediately visible. On the contrary, its data model attracts attention only by a few specialists, if at all. Users feel the consequences of bad (or absent) data model design through the symptoms of wordization, in particular lock-in, but rarely understand where it comes from. Interestingly, this problem was also mentioned yesterday at the OpenDreamKit meeting, by Michael Kohlhase who discussed the digital representation of mathematical knowledge and the difficulty of exchanging it between different software tools. I have written earlier about another aspect, the representation of scientific models in computational science, which illustrates the extreme case of tools having absorbed scientific content to the point that its users don’t even realize that something is missing.

Back to notebooks. Let’s forget about tools for the moment and consider the question of what a notebook actually is, as a digital document. I think that notebooks are trying to be two different things, and that many of the problems we have with them come from this ambiguity. One role of notebooks is the documentation of computational work as a narrative with direct access to the data. This is why people publish notebooks. The other role is as a protocol of interactive explorative work, i.e. the computational scientist’s equivalent of a lab notebook. The two roles are not completely unrelated, but they still significatively different.

To see the difference, look at how experimental scientists worked in the good old days of pencil, paper, and the printing press. As experiments were done, all the relevant information (preparation, results, …) was written down, immediately, with a time stamp, in the lab notebook. Like a bank ledger, a lab notebook is an immutable protocol of what happened. You don’t go back and change earlier entries, that would even be considered fraud. You just add information at the end. Of course, the resulting protocol is not a good way to communicate one’s findings. Therefore they are distilled and written up in a separate narrative, which surrounds a description of the work and its most important results by a motivating introduction and summarizing conclusions. This is the classic scientific article.

Today’s computational notebooks are trying to be both protocol and narrative, and pretend that there is a fluent transition between them. One unfortunate consequence is that computational protocols disappear as they are edited to become narratives. This could be alleviated by keeping notebooks under version control, but I have yet to see good versioning support in any notebook-type tool. But, fundamentally, today’s notebook tools don’t encourage keeping a protocol. They encourage frequent changes to the code and the results, keeping only the latest version. As editors for narratives, notebook tools are also far from ideal because they encourage interactive execution of small code snippets, making it easy to lose track of what was actually executed and in what order. In Jupyter, the only way to ensure a coherent narrative is to (1) restart the kernel and (2) re-execute all cells. There is not even a single menu entry for this operation. Actually, I wonder how many Jupyter users are aware that they must restart the kernel before re-executing all the cells if they want to ensure reproducibility.

With all that said, here is my current idea of what a notebook should look like at the bit level. A notebook data model should have two distinct entries, one for a protocol and one for a narrative. The protocol entry is a sequence of code cells and results, as they were executed since the start of the computation (for Jupyter, that means the last kernel restart). The narrative is a user-edited sequence of code cells, documentation cells, and results. The actual cell contents could well be shared between the two views: store each cell with a unique ID, and make the protocol and the narrative simple lists of IDs. The representation of code and documentation cells in such a data model is straightforward, though there’s a huge potential for bikeshedding in defining the details. The representation of results is much more difficult if you want to support more than plain text output. In the long run, it will be inevitable to define clear data models for every type of display widget, which is a lot of work.

From the tool point of view, the current Jupyter interface could be complemented by a non-editable protocol view. I’d also like to see a single command (menu/keyboard) for the “clean slate” operation: save the current state as a snapshot (or commit it directly to version control), restart the kernel, and re-initialize the protocol to an empty list. But what really matters to me is the data model. Contrary to the current one implemented in Jupyter, the one outlined above could be integrated into workflow management and archivation tools, such as my own ActivePapers. We’d probably see an Emacs mode for working with it as well. Plus pretty-printing tools, analysis tools, etc. We’d see an ecosystem of tools working with notebooks. A Dream of Openness.